OP _CODE

Funct | ALU_ | Output Y Unsigned range: 0 to 2" — 1

10on opP . n—1 n—1
Signed Range: — 2 " to 2 -1

AND | 000 A AND B

OR 001 AORB Sign [0 is positive]

XOR 1010 A XOR B Exponent [exponent + 127 in binary]

NOT |o011 1A Mantissa [drop leading one, pad/cut

ADD | 100 A+B to 23]

SUB |[101 A-B

A 110 A Set: AND, Clear: OR, Invert: XOR

B 111 B Big Endian: First first, Little Endian:
Last first

FETCH: Instruction is fetched

REG: Register values are loaded
ALU: Operation is executed

MEM: Memory stage, Branch sets PC
WRITE: Write back to registers

Branch hazard: lines that aren’t supposed
to executed are flushed after PC is set to
branch

Data hazard: stalling occurs to wait for
data resolved in previous line to be
written back

Cache slot: (int)(slot_num/4) % N

Timing | Efficiency: (Te e cacheaccess +m

iss
rate access

* mem) | Clock Frequency = 1/D, D = signal delay

Max delay among stages + inter-register

a | Pipeline cycle time delay
Non-pipeline cycle

b|.. Sum of all delays among stages
time

¢ | Speed up ratio b/a
Pipeline time for X _ "

d tasks a+X—-1) *a
Sequential time for "

® | X tasks X*b

f | Latency Time for a single cycle: d || b
Throughput for X

9 | instructions X/r

ALU_OP: What operation is performed?
Imm nReg: Is ALU B an immediate? (0/1)
RdA addr: Address of A (rN/XX)
RdB_addr: Address of B (rN/XX)

DM _RD: Memory read (1/0)

DM WR: Memory write (1/0)

MEM nALU: Writing back an ALU result
(1), data_mem output (XX), or neither (0)?
Wr: Are we writing back to a register? (0/1)
Wr_addr: Writing to what register? (rN/XX)
PC: Program counter (+4/branch_name)

CMP: SUB, TST: AND

Stack Push: STR rN,[r13],#-4
Stack Pop: LDR rN,[r13,#4]!

Spatial and Temporal Locality: Data has spatial locality when it’s close to other frequently accessed data in memory.
The cache takes advantage of this as it will load related data inherently. Data has temporal locality when it’s accessed
repeatedly in a short period of time.

ARM Commands — Appending S to command not listed as [F] listed updates flags

Cmd | Operation Affects [Description

ADD | Add R opl +op2

SUB [Subtract R opl - op2

ADC | Add with carry R opl + op2 + carry flag

SBC [Subtract with carry | R opl - op2, and if carry is clear, -1 (C = 0 for borrow)
CMP | Compare F opl - op2: updates flags, doesn’t store result
MOV [Move R Loads opl into the destination

MVN | Move not R Moves not(operand 1) into the destination register
AND | And R opl AND op2

ORR | Or R opl OR op2

EOR | Exclusive or R opl XOR op2

TST | Test F Performs an AND on operands 1 and 2

LDR | LoaD Register R LDR r1,=0xFEED 1973

LDR | & M LDR rl1,[r2],#4 loads mem at [r2] into r1, adds 4 to r2
LSR | Logical shift R F Regular shift right

ASR | Arithmetic shift R | F Shifts and replaces sign bit with original sign bit
ROR | Rotation R F Shifts right with rotation

LSL Logical shift L F Regular shift left

BAL | Branch always BMI If minus

BEQ | Ifequal BPL If plus

BNE | Not equal BVS If overflow set

BGT [Greater than BVC If no overflow

BGE [Greater or equal

BLE | Less than or equal

BLT Less than

