
The Deep Learning Guide

Amelia N., Liesa L.

Last updated April 32, 2025

Contents

0 Introduction and Linear Algebra Stuff 2
0.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
0.2 Math Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
0.3 Calculate Eigenvalues and Eigenvectors! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.4 Singular Value Decomposition! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
0.5 SVD Step by Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
0.6 Systems of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1 Image Classification 7
1.1 Image Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Drawing a Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Classification in a Machine Learning Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Loss Function 8
2.1 Loss Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Softmax Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Neural Networks 10
3.1 Forward Pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Backwards Pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Sidenote: Neuron Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Applying the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Backpropagation Using the Jacobian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Convolutional Neural Networks 14
4.1 Handling Multi-Layer Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14



0 Introduction and Linear Algebra Stuff

0.1 Introduction

Categories of Machine Learning:

1. Predictive Supervised (classification and regression)

2. Descriptive unsupervised (clustering and association)

3. Reinforcement learning (self-fed inputs)

Classification

1. Linear

2. Non-linear

Represent almost anything as linear classification

1. Data representation can make a nonlinear system linear

2. Kernel methods

3. High dimensional representation

4. Feature spaces

Evolution of Learning

1. Rule based systems

• Program → hand-designed program → output

2. Classic Machine Learning

• Input → Hand-designed features → Mapping from features → Output

3. Representation Learning

• Input → Features → Mapping from features → Output

• Deep Learning: Input→ Simple features→ Additional layers of more abstract features→Mapping
from features → Output

0.2 Math Review

The vector: X =


x1

x2

...
xn


n×1

XT =
[
x1 x2 ... xn

]
1×n

|X| =
√∑n

1 x
2
i

Property of transpose matrices: (AB)T = BTAT

Vectors can be used for representing data or geometric information.

Normalization makes the vector unit length and preserves direction X =
X

|X|
Dot product X · Y =

∑n
1 xiyi also U · V = |V ||U |cos(θ) when θ is the smaller angle between them.

2



The cross product has magnitude |U | = |X||Y |sin(θ) is perpendicular to both original vectors and is com-

puted by finding the determinant of this matrix U = X × Y =

 i j k
x1 x2 x3

y1 y2 y3

 = (x2y1 − x3y2)i − (x1y3 −

x3y1)j + (x1y2 − x2y1)k

Determine two or more vectors’ linear independence by row reducing their cumulative matrix V1...Vn →[
V1 ... Vn

]
If the final result has two or more rows that are multiples of each other, the system is linearly dependent.
Otherwise, the system is linearly independent.

Orthogonal: dot product of two vectors is zero

Orthonormal: dot product is zero AND both vectors are unit vectors

Add matrices (they must have the same dimensions)

[
a b
c d

]
+

[
x y
z w

]
=

[
a+ x b+ y
c+ z d+ w

]
Scale a matrix

[
a b
c d

]
× w =

[
wa wb
wc wd

]
Multiply matrices [m× n] ∗ [q × p] = [m× p] where n = q

Properties of determinants:

1. det(AB) = det(A) ∗ det(B)

2. det(AB) = det(BA)

3. det(A+B) ̸= det(A) + det(B)

4. If A is a diagonal matrix, then det(A) is the product of its diagonal entries

Inverse matrices

1. The det(A) ̸= 0

2. A must be square to have a determinant, and therefore must be square to have an inverse

3. det(A−1) =
1

det(A)

4. (AB)−1 = B−1A−1

5. (AT )−1 = (A−1)T

6. In the simplest case, a 2× 2 matrix’s inverse is
1

det(A)

[
d −b
−c a

]
Rank
The rank of a matrix is equal to the number of pivots a matrix’s row echelon form has.

0.3 Calculate Eigenvalues and Eigenvectors!

Given a matrix

[
6 2
2 3

]
, calculate its Eigenvalues and Eigenvectors.

Eigenvalues: det(A− λI) = 0→ det(

[
6− λ 2
2 3− λ

]
) = 0

(6− λ)(3− λ)− 4 = 0→ λ2 − 9λ+ 14 = 0→ (λ− 7)(λ− 2) = 0

3



λ = 7, 2

Then calculate the Eigenvectors by row reducing each matrix after plugging in all λs.

When λ = 7[
6− 7 2
2 3− 7

]
=

[
−1 2
2 −4

]
∼

[
−1 2
1 −2

]
∼

[
1 −2
1 −2

]
∼

[
1 −2
0 0

]
1x1 − 2x2 = 0→ x1 = 2x2[
x1

x2

]
→

[
2x2

x2

]
→ x2

[
2
1

]
→

[
2
1

]

When λ = 2[
6− 2 2
2 3− 2

]
=

[
4 2
2 1

]
∼

[
2 1
2 1

]
∼

[
2 1
0 0

]
2x1 + 1x2 = 0→ x1 = −1

2
x2[

x1

x2

]
→

[
−1

2
x2

x2

]
→ x2

[
−1

2
1

]
→

[
−1

2
1

]

Diagonalization: D =

[
7 0
0 2

]
when P =

[
2 −1

2
1 1

]
with property P−1AP = D

0.4 Singular Value Decomposition!

The goal of the SVD is to find the equation A = UΣV T from an m × n matrix A. When encountering an
SVD problem, do not panic. Instead, follow these steps to victory:

1. Determine V T (This matrix will be of size n× n)

(a) Find ATA

(b) Find the eigenvectors of ATA and normalize them
1√∑
v2i

v

(Divide each of their elements by the magnitude of the vector)
V =

[
v1 ... vn

]
(c) Determine V T by taking the transpose of V

2. Determine Σ (This matrix will be of size m× n)

(a) Refer to your previous computations to determine σ1...n. These values will be the square roots of
each of the positive eigenvalues found in the previous step.

(b) Build a diagonal matrix Σ from these values with all other entries being 0. Important note: the
order of the columns of U corresponds with the order in which σ1...n are put into the matrix Σ.

3. Determine U (This matrix will be of size m×m)

(a) Calculate the vectors u1...n using ui =
1

σi
Avi by using σi from step 2 and vi from step 1.

4



(b) Build the matrix U from u1...n

Property of SVD: A−1 = V D−1UT

The proof:

1. A = UDV −→ AAT = UDV T (UDV T )T

−→ AAT = UDV T (V DTUT )
−→ AAT = UDV TV DUT

−→ AAT = UD2UT

The columns of U are AAT ’s Eigenvectors

2. A = UDV −→ ATA = (UDV T )TUDV T

−→ ATA = (V DTUT )UDV T

−→ ATA = V DUTUDV T

−→ ATA = V D2V T

The columns of U are ATA’s Eigenvectors

3. λi is an Eigenvalue of ATA −→ σ2
i = λi

0.5 SVD Step by Step

Let’s run through an example because this is difficult to comprehend by just staring at the step-by-step guide.

1. Let A =

[
1 −1 3
3 1 1

]

ATA =

 1 3
−1 1
3 1

[
1 −1 3
3 1 1

]
=

10 2 6
2 2 −2
6 −2 10


Note how ATA is symmetrical. Symmetric matrices are the easiest to work with.

2. Next, find the Eigenvalues and Eigenvectors of ATA. Remember the characteristic polynomial: (A −
λI)x = 0 for the next couple of steps.

det
(10− λ 2 6

2 2− λ −2
6 −2 10− λ

)
= 0 −→ λ = 16, 6, 0

Always order the Eigenvalues from greatest to least.

3. Find the Eigenvectors by plugging the Eigenvalues back into the characteristic polynomial. Here’s one
of the Eigenvector computations:

λ1 = 16

10− 16 2 6
2 2− 16 −2
6 −2 10− 16

x1

x2

x3

 =

00
0


→

−6 2 6
2 −14 −2
6 −2 −6

x1

x2

x3

 =

00
0


Row reduce the matrix

−6 2 6 0
2 −14 −2 0
6 −2 −6 0

 to get

1 0 −1 0
0 1 0 0
0 0 0 0


Get the equations x1 − x3 = 0 and x2 = 0 from the row reduced matrix.

5



Construct the final Eigenvector v1 =

x1

x2

x3

→
x3

0
x3

→ x3

10
1



Find the unit vector:
1√
2

10
1

 =


1√
2
0
1√
2


Repeat the process for the other Eigenvalues, get V , and then derive V T .

Final Eigenvector V =


1√
2
− 1√

3
− 1√

6

0 − 1√
3

2√
6

1√
2

1√
3

1√
6

, V T =


1√
2

0
1√
2

− 1√
3
− 1√

3

1√
3

− 1√
6

2√
6

1√
6


4. Take the roots of the positive Eigenvalues and put them in the diagonals of the Σ matrix. Fill all other

slots with zeroes.

Σ =

[√
16 0 0

0
√
6 0

]
→

[
4 0 0

0
√
6 0

]
5. You’re almost there. Time to find U .

Here’s an example computation for the first rooted Eigenvalue σ1.

Av1 = σ1u1 → u1 =
1

σ1
Av1 =

1

4

[
1 −1 3
3 1 1

]
1√
2
0
1√
2

 =


1√
2
1√
2


Repeat for σ2

u2 =


1√
2

− 1√
2


Combine the results into

U =


1√
2

1√
2

1√
2
− 1√

2


The final decomposition:

A =


1√
2

1√
2

1√
2
− 1√

2

[
4 0 0

0
√
6 0

]


1√
2

0
1√
2

− 1√
3
− 1√

3

1√
3

− 1√
6

2√
6

1√
6


Note how the matrices would still be compatible if there were three σs as U would be 2 × 3 and Σ × V T

would be 3× 3, which are compatible for matrix multiplication.

6



0.6 Systems of Linear Equations

Systems of linear equations can be solved manually, but this is time consuming. To quickly solve a system
of linear equations, the echelon form of a matrix can be used.
A matrix can be built from the equations

3x− 4x2 = 9
6x+ 5x2 = 2

→
[
3 −4 9
6 5 2

]
∼

[
1 0 ≈ 1.36
0 1 ≈ −1.23

]
Good to know: Systems that have more equations than variables are called over-determined systems. Sys-
tems that have fewer equations than variables are called under-determined systems, can always be solved,
will always have infinitely many solutions when consistent, and usually have free variables.

1 Image Classification

1.1 Image Classification

Let’s classify images. Here are some variances that may be on the exam:

1. Viewpoint

2. Illumination

3. Deformations

4. Clutter

5. Occlusion

6. Intraclass Variations

1.2 Drawing a Line

After a model has classified a dataset, the big question is what distance metric should be used to totally split
that sucker up! There are two options: L1 distance and L2 distance.

1. L1 “Manhattan” Distance

dMntn(I1, I2) =
∑

p |I
p
1 − Ip2 |

(a) Angular; works on a grid

(b) Often used for higher dimensional data

(c) Efficient as square root operation is computationally expensive

2. L2 “Euclidean” Distance

dEucl(I1, I2) =
√∑

p(I
p
1 − Ip2 )

2

(a) Abstract; works continuously

(b) Is more accurate for the most accurate shortest distance between two points

(c) More computationally expensive as the square root operator is used

7



1.3 Classification in a Machine Learning Context

Training a network on an entire dataset can lead to the model being extremely accurate for that dataset
specifically, which can lead to good results under false pretenses. To combat this, the data can be split up
strategically during the machine learning process to find the best model when its results are compared to
unknown data.

Before using any strategy to train a network, it’s important to separate some of that data to use as test
data. This data should not be touched at all during the training process. Now for the data using during
training. Since it’s computationally expensive to run every single piece of data through the network at once,
the data is split up into various folds which will then be used in sequence to improve the loss of the network.
For example, the first Fold will receive random weights and biases and run a number of passes using its data.
The network then passes on the current progress to the next fold. This ensures that all the data is used and
that the process isn’t as computationally expensive as it would be if there were just one pass with all the data.

The final network can then be demonstrated by using data that the network has never seen before (the
Test Data) to demonstrate its accuracy candidly.

Trivia:

1. What is a significant challenge in image classification? The semantic gap

2. How does nearest neighbor training work when building a classifier? Memorize all data and labels, then
predict the label by finding the most similar training image

3. What is an issue with nearest neighbor training? It takes up a lot of space

4. What three categories should you split your data into when building a model? Training, validation,
and test. Choose parameters that work best on validation and evaluate on test.

5. Why is it bad to split your dataset into training and test only, choosing parameters that work best on
test? You can’t predict how it the model performs on new data

6. What happens in cross-validation? First split your dataset into folds. Try each fold as validation and
average the results.

7. What is the parametric approach to classification? Take image features, then map features to a class
score using a linear function

8. How can we tell if the results from a model training are good? Use a loss function

9. What are the next steps in model training after using a loss function? Optimize W and b to minimize
loss. This consists of backprop (to compute gradients), then gradient descent (to update weights)

10. What values do W and b start with? Random values

2 Loss Function

2.1 Loss Table

Loss can be used to reward or punish a neural network during training.

Loss function:
∑

j ̸=yi

{
0 ←− syi ≥ sj + 1

sj − syi + 1←− otherwise

Observations about loss:

1. Changing the individual scores a little doesn’t impact the final loss that much

8



Catness 2.1 1.4 2.3
Ratness 3.5 5 2
Flowerness -2.3 2.8 -5
Loss 2.4 0 16.3
Final Loss 9.35

2. The bounds of the loss are [0,∞)

3. If W (weights) are initialized to small numbers, the loss will then be N − 1 where N is equal to the
number classes

4. The loss can be averaged in a variety of different ways, but they still reflect the same reality

5. There are infinitely many ways of achieving zero loss

2.2 Regularization

When training the model on a certain dataset, it may be rewarded too well within its limited dataset. To
counteract this, a regularization function is used to prevent the model from excelling while comparing its
results to the training data.

L(W ) =
1

N

∑N
1 Li(f(xi,W ), yi) + λR(W )

Where λ is the strength of the regularization.

2.3 Softmax Loss

Softmax Loss is a way of making the data easier to read and quantify in one sweep. When applying Softmax
Loss, the first step is to convert the values in each column associated with the class of an item to a percent-
age. This is called the normalized probability of the class. This makes the values easier to work with, but
most importantly, relative to each other. Knowing one value as a percentage is infinitely more valuable to
an understanding of how the network has classified that image compared to knowing one arbitrary, unscaled
value without context. Even with context, it can be hard to quantify the impact of arbitrary values (as seen
above in the beginning of the loss section) on the final loss.

The question is how the Minus Log-Probability is calculated. Only the natural log ln(P ) of the value of
the desired class in a certain column has to be calculated. For example, only the normalized probability of
the Catness of the cat is required to calculate the MLP (Minus Log-Probability) which comes out to 1.61. At
first glance, this may make no sense. How are the other values accounted for if only the normalized probablity
of the Catness is being plugged in? Well, that’s because the percentage is inherently relative to the other
values. All the values went into calculating each of the parts of the percentage. As seen in the chart, all the
columns add to one. They are relative to each other.

When you find the relative loss to the incorrect classes, you can reward models that have a value approaching

zero. This is because, in theory, the value of the classifications should come out to, say,

10
0

. This would

mean that a model is 100% confident that whatever it’s classifying is the correct class (assuming that the
correct class is in fact the first entry), resulting in −ln(1) = 0, or zero loss!

9



Catness 0.2 0.02 0.569612
Ratness 0.8 0.88 0.43
Flowerness 0 0.1 0.000388
Minus Log-Probability 1.61 0.129 7.85
Final Loss 3.198

Softmax function: P (Y = k|X = xi) =
esk∑
j e

sj

Minus Log-Probability Function: Li = −ln(P )

Reference the table at the beginning of the section and note how the flower’s classification is the least accurate
at -5. The Flowerness as a normalized probability comes out to 0.000388, which ends up rendering a MLP
of 7.85, almost 5 times worse than the cat’s MLP.

Softmax trivia:

1. The bounds of Li : [0,∞)

2. Li is equal to ln(N) at initialization where N is the number of classes

Trivia:

1. What is the equation for Hinge Loss? Li =
∑

max(0, sj − sy + 1)

2. If you have N number of classification labels, what do you do to get total loss? Sum the loss of each
category and divide by N. (i.e., get the average)

3. Given W1 = [1 0 0 0] and W2 =[0.25 0.25 0.25 0.25], what does L2 regularization prefer? W2 because
L2 prefers weights to be spread.

4. Given W1 and W2 above, what does L1 regularization prefer? W1 because L1 prefers weights to be
concentrated.

5. What happens without regularization? Model fits too closely to training data, and you get large loss
values for test data.

6. The purpose of the Softmax function is to maximize the probability of what? The correct class

3 Neural Networks

A neural network consists of various layers that are composed of nodes. The first layer in an input layer,
which consists of the data that’s currently getting classified. The last layer is the output layer. This is the
layer associated with the different labels associated with the different classes that can result from the inputted
data. The layers in between are called hidden layers. These hidden layers are responsible for applying weights,
biases, and an activation function to the previous inputs that were fed into the layer. The output layer may
or may not have weights, biases, and/or an activation function.

10



Input Layer

Hidden Layer

Output Layer

x0

x1

x2

f(Σ)

f(Σ)

f(Σ)

f(Σ)

f(Σ)

3.1 Forward Pass

1. Receive Inputs: x1, x2, x3

2. Multiply Inputs by Weights: Compute w1x1, w2x2, w3x3

3. Compute Weighted Sum: z = w1x1 + w2x2 + w3x3 + b

4. Apply Sigmoid Activation Function: y =
1

1 + e−z

5. Compute Loss*: L

This process is pretty straightforward. The inputs get multiplied by their corresponding weights, the bias
is added, and then the result is put through the activation function. The only step that only is executed
sometimes is the computation of the loss. The loss of the network only should be computed for the output
layer. Once the forward pass for the entire network has been run through, the backwards pass comes next.

3.2 Backwards Pass

The goal of the backwards pass is to compute the final gradient of the network as a whole. To do this
manually, the chain rule can be applied to the operations that were performed on the values to get individual
gradient matrices for each layer which can be multiplied by a small step factor and then applied to the original
weight matrices that they correspond to. The gradient matrix of a layer must have compatible dimensions
with its corresponding weight matrix.

Assuming that the activation function applied on the layer was a sigmoid function (
1

1 + e−z
), this is what

the chain rule will look like.

1.
df

df
= 1

The derivative with respect to itself is one.

2.
df

dx
=

df

dx

df

df
=

(
− 1

x2

)
× 1

The derivative of the function applied is taken.

11



3.
df

dy
=

dx

dy

df

dx
= 1× df

dx

The operation applied on the original number 1 + y has a derivative of 1.

4.
df

dz
=

dy

dz

df

dy
= eprev × df

dy

The derivative of ex is ex.

5.
df

du
=

dz

du

df

dz
= −1× df

dz

The derivative of the operation −u performed on the value is −1.

6. All + addition operations performed on a number will derive from an equation that looks like u(w) =
w + c. The derivative of these equations will always be 1.

7. The final operations performed during the backwards pass are the ones that are for the original multipli-
cations between the weights and inputs. Take the weight w0 and input x0. The formula f(w0) = w0x0

and f(x0) = w0x0 both each result in the same value but are that value with respect to a different
input. Taking each of their derivatives, it would mean that their respective variable would derive to 1
and the opposite value (now a multiplying constant) will remain. This is why the ‘current chain rule
value’ is seemingly multiplied by the opposite value - it’s just treating the opposite value as a constant
and the respective value as the variable.

To reiterate because this can be confusing at first, the same process of multiplying the previous chain
rule value is by the current derivative is applied here. Let’s find the derivative of f(w0) = w0x0 to

get the value that will correspond to its final gradient value.
df

dw0
= 1 × x0. Observe how x0 remains

because it’s treated as a constant. It’s like taking the derivative of 2x with respect to x.
df

dx
2x = 2.

The w0 is treated the same as the 2 in this situation.

12



3.3 Sidenote: Neuron Activation Functions

There are a variety of activation functions to choose from. These include the

1. Sigmoid

σ(x) =
1

1 + e−x

• Often used for when we want to predict the probability as an output (since sigmoid squashes
output to probabilty between 0 and 1)

• Commonly used in output layer for binary classification

2. Leaky ReLU

max(0.1x, x)

• Outputs input directly if positive, and 0.01 for negative inputs

• Good for deep networks

• Addresses “dying ReLU” problem by allowing some degree of negative inputs.

3. Tanh

tanh(x)

• Outputs values between -1 and 1

• Commonly used in hidden layers of a neural network because its zero-centered nature can make
training more efficient than sigmoid

4. Maxout

max(wT
1 x+ b1, w

T
2 x+ b2)

• Returns the max of the inputs

• A generalization of the ReLU and leaky ReLU

5. ReLU

max(0, x)

• Outputs input directly if it’s positive, and 0 otherwise

• Good for shallow (few hidden layers) networks

• Can suffer from ”dying ReLU” problems, where neurons become inactive and stop learning if their
input is negative

• Less computationally expensive than tanh and sigmoid

6. ELU{
x ←− x ≥ 0

a(ex − 1) ←− x < 0

• “Exponential Linear Unit”

• Provides smoother curve than ReLU, which can lead to more stable gradient flow during back
prop

• More computationally expensive than ReLU

• Can produce negative outputs

13



3.4 Applying the Results

1. Update Weights: wi = wi − η
∂L

∂wi

2. Update Bias: b = b− η
∂L

∂b

3. Repeat from Forward Pass

When updating the weights and biases, the final gradient is multiplied by a small constant η so that only
small steps are taken down the final gradient descent so that no overshoot occurs.

3.5 Backpropagation Using the Jacobian

Instead of doing every computation manually, it’s easier to just use matrix multiplication to get the job done.

Given the valuesW =

[
0.9 0.2
1.5 −2.6

]
, x =

[
0.19
0.83

]
and the activation function f(x;W ) = ||W ·x||2 =

∑
(wi · x)2.

Note: the bars are not absolute value bars, but the vector 2-norm. Execute the forward pass by doing the

matrix multiplication Wx =

[
0.337
−1.873

]
and then activate the result to get 3.62. The result ends up being

a single number in this case because the activation function is a cumulative sum of squares. The partial,
relative derivatives come out to

▽rf = 2r where r = Wx so ▽rf =

[
0.674
−3.746

]
▽wf = ▽rf · xT =

[
0.128 0.559
−0.711 −3.109

]
▽xf = WT · ▽rf =

[
−5.0124
9.8744

]
Done like dinner! Not every problem will use this activation function, though, so it’s important to un-
derstand why ▽rf = 2r. In this case, deriving (Wx)2 got there, but in an ReLU problem, the piecewise
aspect about the function must be accounted for in backpropagation (there’s no one way of doing it, the
derivative will be based on the output).

Trivia

1. The derivative of the sigmoid function is what? The sigmoid function multiplied by one minus itself.
dσ(u)

du
= (1-σ(u))σ(u)

4 Convolutional Neural Networks

4.1 Handling Multi-Layer Networks

Neural networks can be two layered (one hidden layer) or multi-layered (two or more hidden layers). The issue
with having a deeper neural network is the fact that they are inefficient as the number of neural connections
they have increase rapidly. However, if connections are limited, nodes in further in the network have almost,
if not the same amount of much visibility further back into the network. The nodes early in the network
that affect a node later in the network make up the later node’s receptive field. As receptive fields of deeper
nodes aren’t affected when limiting the number of connections that each node has, the network can save on
computational power while retaining its computational integrity.

4.2 Convolutional Neural Networks

Convolutional neural networks exist to achieve one goal: increasing the scope of the network while reducing
the number of computations that network must execute to get a final result. By convoluting the data, the

14



network can manage fewer parameters and therefore perform fewer operations for a final result. By stacking
convolved networks and padding the results to maintain the size of the original image, the network can chain
these convolutional layers to increase depth while not getting ridiculously expensive to train and process data
with.

A convolutional layer takes an input image and outputs an altered image with sizing according to the
equation listed below. What it’s really doing is filtering data from the original image into an output image.
The output image is usually smaller but appropriate padding during the process can preserve the original
image size.

1. Convolve a smaller kernel with sections of the input image

2. Filter the green pixels with a second convolution kernel

3. Filter the red pixels with a third convolution kernel

4. Continue chaining convolution layers and activation maps

The deeper the layer, the higher level the features seen in that layer will be.

Trivia:

1. For a 7x7 input with a 3x3 kernel (assuming a stride of 1), what will the size of the output be?

(7− 3 + 1× 7− 3 + 1) = 5× 5

See general formula below.

2. For the same premise but with a stride of 2 instead of 1, what will the size of the output be?

3x3.

General formula: dimout = ⌊N − F

S
+ 1⌋ where N is the width and height of the input, F is the

width and height of the kernel, and S is the stride size.

Formula to pad the output to be the same size as the input image: P =
[(S − 1)×N ] + (F − S)

2

where S > 1 else P =
F − 1

2

3. Input: 32× 32× 3
Kernel: 10 filters 5× 5, stride of 1, pad 2

dimout =
N + 2P − F

S
+ 1 =

32 + 4− 5

1
+ 1 = 32, 10 filters, Final Output: 32× 32× 10

Number of parameters: 5× 5× 3 = 75 + 1 bias per filter
Total parameters: 10 filters × 76 parameters per filter = 760 parameters

15


