

<p><i>Temperature</i></p> $(x^{\circ}\text{F} - 32^{\circ}) * \frac{5}{9} = y^{\circ}\text{C}$ $x^{\circ}\text{C} + 273.15 = y^{\circ}\text{K}$ $P = A + BT^1$ $P = P_0 + pgh$	<p><i>Ideal Gas Law</i></p> $PV = nRT^2$ $R = 8.314 \frac{J}{mol \cdot ^\circ\text{K}} \text{ or } \frac{m^3 \cdot \text{Pa}}{mol \cdot ^\circ\text{K}}$ $R = 0.0821 \frac{L \cdot \text{Atm}}{mol \cdot ^\circ\text{K}}$
<p><i>Thermal Expansion</i></p> $\Delta L = \alpha \Delta T L_i^3$ $[\Delta A = 2\alpha \Delta T A_i]^4$ $[\Delta V = \beta \Delta T V_i]^5 \ (\beta = 3\alpha)$	<p><i>Heat Capacity</i></p> $Q = mc\Delta T^6 \left(c_{\text{water}} = 4186 \frac{J}{kg \cdot ^\circ\text{C}} \right)$ $Q = Lm^7$ $\Delta E_{\text{int}} = Q + W$ $\frac{1 \text{ cal}}{g} = \frac{4186.8 \text{ J}}{kg}$
<p><i>Work from Pressure</i></p> $W_{\text{work}} = - \int_{V_i}^{V_f} P dV$ $W_{\text{isothermal}} = nRT * \ln\left(\frac{V_i}{V_f}\right)$ $W_{\text{isobaric}} = -P(V_f - V_i)$ $Q_{\text{isothermal}} = nRT * \ln\left(\frac{P_i}{P_f}\right)$	<p><i>Rate of Energy Transfer</i></p> $P = kA\left(\frac{T_h - T_c}{L}\right)^8$ $W_{\text{watt}} = 1 \frac{J}{s}$ $E_{\text{loss}} = Q\Delta T$
<p><i>Remember</i></p> $K = \frac{1}{2}mv^2$ $U_{\text{potential}} = mgh$ $V_{\text{sphere}} = \frac{4}{3}\pi r^2, V_{\text{cylinder}} = \pi r^2 h$ $P = \frac{F}{A}$ $\rho_{\text{density}} = \frac{m}{V}$	<ul style="list-style-type: none"> • Isobaric: pressure is constant • Isovolumetric: volume is constant $\Delta E_{\text{int}} = Q \quad W=0$ • Isothermal: temperature is constant • Adiabatic: Q is 0 $W = \Delta E_{\text{int}}$

¹A and B are constants

²pressure * volume = moles * molar gas constant R * temperature

³change in length = coeff. of linear expansion * change in temperature * initial length (α sourced from table)

⁴change in length = coeff. of linear expansion * change in temperature * initial length (α sourced from table)

⁵change in length = coeff. of linear expansion * change in temperature * initial length (α sourced from table)

⁶heat energy = mass* constant c * delta temperature (c is specific heat capacity, sourced from table)

⁷Latent heat during a state change

⁸heat transfer rate = thermal conductivity * surface area * (difference in temperature: hot - cold)/thickness (conductivity sourced from table)

$PV = NkT^9$ $P = \frac{2}{3} \left(\frac{N}{V} \right) \left(\frac{1}{2} m_0 \overline{v^2} \right)$ $T = \frac{2}{3k_B} \left(\frac{1}{2} m_0 \overline{v^2} \right)$ $K_{avg} = \frac{3}{2} k_B T = \frac{1}{2} m_0 \overline{v^2}$	$W_{on\ gas} = P\Delta V$ $F_{avg} = \frac{\Delta p}{\Delta t}$ $F_{avg} = \frac{-2 N \cdot m V_x}{\Delta t}$ $\Delta E_{int} = nc\Delta T^{10}$ $W_{Joules} = Fd$ $m = n_{moles} * n_{mass}$									
$v_{rms} = \sqrt{\frac{3k_B T}{m}}^{11}$ $v_{rms} = \sqrt{\frac{3RT}{M}}^{12}$ $v_{avg} = \sqrt{\frac{8kT}{\pi \cdot m}}$ $P_f = P_i \left(\frac{V_i}{V_f} \right)^\gamma$ $T_f = T_i \left(\frac{V_i}{V_f} \right)^{\gamma-1}$ $c = \frac{1}{1-\gamma} R$ $S = k * \ln(W)$ $\Delta S = \frac{\Delta Q}{T}$	<p><i>Conversions & Constants</i></p> $1\ Joule = 1 \frac{kg \cdot m^2}{s^2}$ $k = 1.38 * 10^{-23} \frac{J}{K}^{13}$ $Avogadro's: 6.022 * 10^{23} \frac{molecules}{mole}$ $1\ Torr = 133\ Pa$ $1\ m^3 = 1000\ L$ $1\ Pa = 9.87 * 10^{-6}\ atm$ $1\ kg = 1\ L\ water$ $745.7\ W_{watt} = 1\ hp$ <p><i>Energy Required for Phase Changes</i></p> $Ice \rightleftharpoons water: 334 \frac{J}{g}$ $Water \rightleftharpoons steam: 540 \frac{cal}{g}$									
<table border="1" data-bbox="192 1252 816 1657"> <thead> <tr> <th></th> <th>Monatomic¹⁴</th> <th>Diatomeric ($\gamma = 1.4$)</th> </tr> </thead> <tbody> <tr> <td data-bbox="192 1284 306 1417">C_v</td><td data-bbox="306 1284 404 1417">$\frac{3}{2}R$</td><td data-bbox="404 1284 816 1417">$\frac{5}{2}R$</td></tr> <tr> <td data-bbox="192 1417 306 1657">C_p</td><td data-bbox="306 1417 404 1657">$\frac{5}{2}R$</td><td data-bbox="404 1417 816 1657">$\frac{7}{2}R$</td></tr> </tbody> </table>		Monatomic ¹⁴	Diatomeric ($\gamma = 1.4$)	C_v	$\frac{3}{2}R$	$\frac{5}{2}R$	C_p	$\frac{5}{2}R$	$\frac{7}{2}R$	$COP = \frac{ Q_h }{W}$ $COP = \frac{Heat\ expelled}{Heat\ absorbed}$ $COP = \frac{heat\ out}{heat\ out - heat\ in}$ $W = Q_h - Q_c $ $E_{pre-loss} = \frac{Electricity\ generated}{Efficiency}$ $\eta = 1 - \frac{T_c}{T_H}^{15}$
	Monatomic ¹⁴	Diatomeric ($\gamma = 1.4$)								
C_v	$\frac{3}{2}R$	$\frac{5}{2}R$								
C_p	$\frac{5}{2}R$	$\frac{7}{2}R$								

⁹ P is pressure, V is volume, N is number of molecules, k is the Boltzmann constant, and T is temperature

¹⁰ where c is either C_v , C_p

¹¹ T is temperature (°K), m is molecular mass (Daltons)

¹² T is temperature (°K), M is the molar mass kg/mol

¹³ Boltzmann constant

¹⁴ Monatomic elements: He, Ne, Ar, Kr, Xe, Rn, H, F, Og, O, S

¹⁵ Thermodynamic efficiency: $1 - (\text{Cold temperature}/\text{Hot temperature})$

<p><i>Electric Forces</i>¹⁶</p> $F_e = k_e \frac{ q_1 q_2 }{r^2}$ ¹⁷ $F_e = k_e \frac{ q_{source} }{r^2}$ ¹⁸ $\Delta E = k_e \frac{\Delta q}{r^2}$ $F = q E (F = eE)$ $ \Delta V = Ed$ ¹⁹ <p><i>Constants</i>²⁰</p> $k_e = 8.988 * 10^9 \frac{N * m^2}{C^2}$ $e = 1.602 * 10^{-19} C$ $\epsilon_0 = 8.85 * 10^{-12} \frac{C^2}{N * m * kg}$ $m_{proton} = 1.67 * 10^{-27} kg$ $m_{electron} = 9.11 * 10^{-31} kg$ <p><i>Units</i></p> $Coulombs = A * s$ $Volts = \frac{kg * m^2}{A * s^3}, \frac{1 Joule}{1 C}$ $Joule = N * m$ $\Phi_{flux} = V * m$ $\mu \gg 10^{-6}, n \gg 10^{-9}$ $mm = 10^{-6} cm = 10^{-3}$	<p><i>Electric Flux</i></p> $\Phi = EA^{21}$ $\Phi = EA \cos(\theta)$ $\Phi = \int_{surface} E \cdot dA$ $\Phi = \frac{Q}{\epsilon_0}$ ²² $\Phi = \frac{\rho_v V}{\epsilon_0}$ ²³ as $Q = \rho_v V$ $E = \frac{Q}{4\pi\epsilon_0 r^2}$ for $r > a$ $E = k_e \frac{q}{a^3} r$ for $r < a$ <p><i>Electric Potential Energy</i></p> $V \equiv \frac{U_E}{q}$ $\Delta V \equiv \frac{\Delta U_E}{q} \equiv V_B - V_A$ $V = k_e \frac{q}{r}$ $W = q\Delta V$ $K = \frac{1}{2}mv^2$ $U_E = k_e \frac{q_1 q_2}{r_{1\&2}}$ $U_E = qV$ $\Delta K + \Delta U = 0$	<p><i>Conversions</i>²⁴</p> $\rho \equiv \frac{Q}{V} \sigma \equiv \frac{Q}{A} \lambda \equiv \frac{Q}{l}$ $dQ = \rho dV dQ = \sigma dA $ $dQ = \lambda dl$ <p><i>Capacitance</i></p> $Q = CV^{25}$ $C = 2\pi\epsilon_0 \frac{L}{\ln(\frac{b}{a})}$ ²⁶ $Q = EA\epsilon_0$ $E = \frac{1}{2}C_{eq} V^2$ $C_{eq\ parallel} = C_1 + C_2 + C_n$ $\frac{1}{C_{eq\ series}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$ <p><i>Classic Equations</i></p> $Volume = Area * height$ $number\ of\ electrons = \frac{C}{e}$ $V_f = V_i + at$ $\Delta x = V_i t + \frac{1}{2}at^2$ $V_f^2 = V_i^2 + 2a\Delta x$ $\Delta x = \frac{1}{2}(V_i + V_f)t$ $F_{cent} = \frac{mv^2}{r} \omega_{ang\ vel} = \frac{v}{r}$
---	---	---

¹⁶ C (Coulombs), V (Volts), ϕ (Electric flux), Q (Particle charge), A (Ampere)

¹⁷ k is Coulomb's constant, q are the magnitudes of particles' charges, and r is the distance between the particles

¹⁸ k is Coulomb's constant, q is the magnitude of the source charge, and r is the distance from the source, use this equation for when the affected particle is uncharged.

¹⁹ ΔV is the difference in voltage, E is the electric field strength, and d is the distance between the points

²⁰ e is the elementary charge of a proton and electron.

²¹ The electric flux of a surface is the strength of the electric field passing through it times its area

²² *Gauss' Law*: The total electric flux through a closed surface of a volume is given by dividing the total charge enclosed in the volume divided by the electric constant

²³ The total electric flux through the surface of a given object is equal to the object's density times the object's volume over the electric constant

²⁴ Charge per volume (volume charge density), charge per area (surface cd), charge per length (linear cd)

²⁵ Charge = Capacitance * Voltage

²⁶ Capacitance of a cylindrical capacitor

<p><i>Current and Resistivity</i></p> $\Delta V = IR \quad \quad I = \frac{\Delta V}{R} \quad \quad R = \frac{\Delta V}{I}$ $P_{watts} = \frac{V^2}{R}, \quad P_{watts} = I^2 R$ $I = \frac{\Delta Q}{\Delta t} \quad P = I \Delta V$ $v_{drift} = \frac{I}{neA} \text{ where } n = \frac{6.022 \times 10^{23} * \rho}{m_{atomic}}$ $\text{Current} = I = \frac{Q}{t}, \quad I_{avg} = \frac{\Delta Q}{\Delta t}$ $R = R_0 (1 + \alpha \Delta T)$ $R = \frac{\rho L}{A}$ $J = \frac{I}{A}^{27}$ $\Delta Q = (nA * \Delta x)q^{28}$ $\Delta Q = (nA * v_d * \Delta t)q$ <p><i>Conversions</i></p> $1\Omega = \frac{1V}{1A}$ <p><i>Rolling without slipping (only)</i></p> $v_{center of mass} = \sqrt{\frac{4a\Delta x}{3}}$ $F\Delta x = \frac{3}{4}m(v_{cm})^2$	<p><i>Biot-Savart Law</i></p> $B = \frac{\mu_0 I}{4\pi} \int \frac{ds \times r}{r^2}^{29}$ $\mu_0 = 4\pi * 10^{-7}$ $B = \frac{\mu_0 I}{2\pi a}^{30}$ <p>Curved wire segments: $B = \frac{\mu_0 I}{4\pi a} \theta$</p> <p>Circular current loops³¹: $B_x = \frac{\mu_0 I a^2}{2(a^2 + x^2)^{3/2}}$</p> $\frac{F_B}{l} = \frac{\mu_0 I_1 I_2}{2\pi a}^{32}$ <p><i>Ampère's Law</i></p> $\oint B \cdot ds = \mu_0 I$ $B_{solenoid} = \mu_0 n I^{33}$ $n = \frac{N}{\text{Helix length}}; \quad N_{turns/length} = \frac{\text{Helix length}}{2r_{wire}}$ $l_{wire} = N * 2\pi r_{helix}$ $\Phi_B = \int B \cdot dA$
$1 \text{ Tesla} = 1 \frac{N}{C \cdot m/s} = 1 \frac{N}{A \cdot m}$ $F_B = qv \times B^{34}$ $ F_B = q vB \sin(\theta)$ $F_L = qE + F_B^{35}$ $F_B = IL \times B$ $F_B = I \int ds \times B^{36}$	<p><i>Faraday's Law</i></p> $\varepsilon = - \frac{d\Phi_B}{dt}$ $\varepsilon = - N \frac{d\Phi_B}{dt}$ $\varepsilon = - Bl \frac{dx}{dt} \gg \varepsilon = - Blv$ $v = \frac{E}{B}$

²⁷ Current density is charge over cross sectional area

²⁸ n is mobile charge carriers per unit volume, A dx is cross sectional area, q is charge

²⁹ The Biot-Savart Law finds the magnetic field created by the charges that make up a flowing current

³⁰ The magnetic field a distance a away from an infinite (or very long) wire

³¹ a is the radius of the loop while x is the distance from the center the magnetic force is being solved for

³² Magnetic force between two wires

³³ The magnetic field inside an ideal solenoid (a wire wound as a helix) where n is the number of turns/unit length

³⁴ The vector expression for magnetic force: q is charge, v is the velocity vector, B is the magnetic field vector

³⁵ The Lorentz Force is used when the particle is affected by both an electric field and a magnetic field

³⁶ The magnetic force on a length $\int ds$ of wire